迅捷ocr文字识别软件怎么安装?
一、迅捷ocr文字识别软件怎么安装?
可以使用天若ocr或者熊猫ocr,截图而后识别文字即可,如果图片特别多,可以用ABBYY批量识别
二、OCR文字识别软件有哪些?
这里是每天都在努力搬砖、爱生活爱分享的小敏~
今天来给大家分享几款好用的图片转文字网站及软件,准确率超高!
一、QQ
QQ相信大家电脑里都有吧,虽然现在很少人用QQ了,但它的文字识别功能还是很强大的,操作也非常简单,只要登录QQ,按住快捷键ctrl+alt+o节能就能开始识别图片中的文字
识别的结果排版、段落,基本上都是跟原图片的一样,同时识别好的文字还可以进行编辑、翻译、复制、或者以文档的形式下载到电脑里,超级方便
顺便再来给大家分享一下QQ其他功能的快捷键
ctrl+alt+s➞屏幕录制
ctrl+alt+a➞截图
像一些基础的文字识别,咱们用QQ的文字识别功能完全就可以搞定了
二、智能翻译官
下载网址:智能翻译官 - 免费在线翻译文档、翻译图片、翻译文本
看到这个名字是不是以为它只是个翻译软件?NO!智能翻译官不仅可以翻译还可以视频、音频转文字以及题主需要的图片转文字,简直就是多才多艺,识别结果基本上没有错误,准确率超高!
来给大家简单演示一下,选择图片转文字功能,上传需要转文字的图片
点击开始转换,等待1-2秒,识别结果基本上没有任何错误,连一个标点符号都没有被落下!排版也是跟原图片上保持一致,识别结果支持TXT、WORD、SRT格式输出
手写也可以识别,只要不是什么行书草书统统都能识别
三、飞转OCR文字识别
下载网址:https://www.pdf123456.com/
这是款专业的电脑识别软件,识别率高、支持批量操作,有图片转文字、截图识别、多国语言识别等多种功能。
上传图片后,可以对图片进行裁剪,只留下需要识别的部分。它的识别效果也是相当不错,即使是中英混合的图片,也基本不会有任何错误,非常推荐!
四、懒猴文字识别
下载网址:https://h5cssjs.com/ocr/#/home
这是一款可以在线使用的文字识别网站,打开之后就是识别页面,非常简介,识别的图片只要不是特别模糊,准确率也还算挺高的。但是它有一个致命的缺点,就是每人只有6次免费的机会,所以偶尔拿来应应急还可以,长期使用不是很推荐!
以上就是我今天的分享,如果对你有用的话记得点赞、收藏+关注@小敏搬砖日记,带你解锁更多好用的办公软件,get更多办公技巧,大家一起变开心打工人~
三、ocr文字识别软件?
随着大家的办公需求的加大,现在已经有很多的办公软件出现了,那么,图片文字提取软件便是其中的一种,因为现在制作图片的要求也比较高,所以,在图片上加入文字也是很正常的事情,那么,怎么样才能够直接将图片中的文字提取出来呢?
首选软件:ABBYY FineReader OCR文字识别软件
ABBYY FineReader 是专业的OCR图片文字识别软件,可以快速、准确、方便地将扫描纸质文件、PDF格式及数字或移动电话图像转换成可编辑格式——Microsoft Word、Excel、PowerPoint、可检索的PDF、HTML、DjVu等。99.8%的识别准确率即刻识别文本,复制和粘贴,搜索或编辑。
四、请问OCR文字识别软件哪个好?
推荐3款超好用的OCR文字识神器,图片、扫描件、纸质档统统可以秒变可编辑的word,学生办公族必备!
一、QQ
QQ相信大家电脑里都有吧,虽然现在很少人用QQ了,但它的文字识别功能还是很强大的,操作也非常简单,只要登录QQ,按住快捷键ctrl+alt+o节能就能开始识别图片中的文字
识别的结果排版、段落,基本上都是跟原图片的一样,同时识别好的文字还可以进行编辑、翻译、复制、或者以文档的形式下载到电脑里,超级方便
顺便再来给大家分享一下QQ其他功能的快捷键
ctrl+alt+s➞屏幕录制
ctrl+alt+a➞截图
像一些基础的文字识别,咱们用QQ的文字识别功能完全就可以搞定了
二、智能翻译官
下载网址:https://www.fanyi1234.com
看到这个名字是不是以为它只是个翻译软件?NO!智能翻译官不仅可以翻译还可以视频、音频转文字以及题主需要的图片转文字,简直就是多才多艺,识别结果基本上没有错误,准确率超高!
来给大家简单演示一下,选择图片转文字功能,上传需要转文字的图片
点击开始转换,等待1-2秒,识别结果基本上没有任何错误,连一个标点符号都没有被落下!排版也是跟原图片上保持一致,识别结果支持TXT、WORD、SRT格式输出
手写也可以识别,只要不是什么行书草书统统都能识别
三、飞转OCR文字识别
下载网址:https://www.pdf123456.com/
这是款专业的电脑识别软件,识别率高、支持批量操作,有图片转文字、截图识别、多国语言识别等多种功能。
上传图片后,可以对图片进行裁剪,只留下需要识别的部分。它的识别效果也是相当不错,即使是中英混合的图片,也基本不会有任何错误,非常推荐!
四、懒猴文字识别
下载网址:https://h5cssjs.com/ocr/#/home
这是一款可以在线使用的文字识别网站,打开之后就是识别页面,非常简介,识别的图片只要不是特别模糊,准确率也还算挺高的。但是它有一个致命的缺点,就是每人只有6次免费的机会,所以偶尔拿来应应急还可以,长期使用不是很推荐!
以上就是我今天的分享,如果对你有用的话记得点赞、收藏+关注@小敏搬砖日记,带你解锁更多好用的办公软件,get更多办公技巧,大家一起变开心打工人~
五、ocr文字识别软件捷径?
1、设置文件存储的位置
页面底端,点击“输出选项”,设置输出文件存储的位置
2、打开文件
点击页面上的“打开文件”,亦可以拖拽进界面,如果文件多,可选择批量添加,全选即可。
3、开始转换
点击“开始转换”,界面有转换的提示,转换完成的百分比,都显示在界面上。
4、输出
找到设置存储的文件夹,打开文件夹,查看转换好的TXT文件,通过复制,可以进行粘贴到WORD文档中。
01/01
操作方法
点击目录可快速跳转至页面对应位置
011、设置文件存储的位置
页面底端,点击“输出选项”,设置输出文件存储的位置
2、打开文件
点击页面上的“打开文件”,亦可以拖拽进界面,如果文件多,可选择批量添加,全选即可。
3、开始转换
点击“开始转换”,界面有转换的提示,转换完成的百分比,都显示在界面上。
4、输出
找到设置存储的文件夹,打开文件夹,查看转换好的TXT文件,通过复制,可以进行粘贴到WORD文档中。
六、ocr文字识别怎么解决?
1。首先,要检查OCR要识别的文本图片,应该是文字清晰,背景和文字色彩对比清楚。如果字体有五号字大(指汉字),分辨率应该是至少300像素/英寸,格式一般是TIF为好,放置应该尽量横平竖直。
如果较差,应该用图像处理软件先做些调整。或是按以上一些指标设定重新扫描。
2。 OCR选择识别的段落范围中不应有表格,图片之类。如果有,应该处理掉或是躲开。
3。对文学作品,古汉语等识别率稍低一些,商务,新闻,计算机类识别率能高一些,但达到95%以上,已经不错了。
4。选择较好的OCR软件。根据我使用,尚书O
CR还是不错的,一般文本可达到98%左右的识别率。
七、OCR文字识别用的是什么算法?
梳理一下OCR文字识别三种解码算法,先介绍一下什么是OCR文字识别,然后介绍一下常用的特征提取方法CRNN,最后介绍3种常用的解码算法CTC/Attention/ACE。
什么是OCR文字识别?
一般来说,文字识别之前需要先对文字进行定位(文字检测主要有基于物体检测和基于分割两种方法),文字识别就是通过输入文字图片,然后解码成文字的方法。本文主要讲文字识别部分,文字识别主要分成三种类型:单字分类、整词分类和整词识别。当能够定位出单字时,可以用图像分类的方法直接对单字进行分类;当需要预测整词数量较少时,可以对整词进行分类;当有大量整词需要预测并且没有单字定位时,就需要用解码序列的方法进行识别了。因此,文字识别中最常用的是文字序列识别,适用场景更为广泛。本文将主要介绍文字序列识别的解码算法。
OCR解码是文字识别中最为核心的问题。本文主要对OCR的序列方法CTC、Attention、ACE进行介绍,微信OCR算法就是参考这三种解码算法的。
不同的解码算法的特征提取器可以共用,后面接上不同的解码算法就可以实现文字识别了,以下用CRNN作为特征提取器。
CRNN
CRNN的特征抽取器由一个CNN和一个BiLSTM组成,其中BiLSTM使用的是stack形深层双向LSTM结构。
CRNN特征提取器流程如下:
1.假设输入图像尺寸为32x100x3(HxWxC),经过CNN转换成1x25x512(HxWxC)。
2.将CNN的输出维度转换为25个1x512的序列,送入深层双向LSTM中,得到CRNN的输出特征,维度转换成为25xn(n是字符集合总数)。
OCR文字识别的难点
OCR文字识别的解码主要难点在于如何进行输入输出的对齐。如上图所示,如果每个1xn预测一个字符,那么可能会出现多个1xn预测同一个字符,这样子得到的最终结果会产生重复字符。所以需要设计针对文字识别的解码算法来解决输入输出的对齐问题。
目前我了解到的主要有三种解码方法,可以解决OCR解码的一对多问题,分别为CTC、Attention和ACE三种。
CTC
CTC是最为经典的OCR解码算法,假设CRNN特征抽取器的输出维度Txn,其中T=8,n包含blank(记作 - )字符(blank字符是间隔符,意思是前后字符不连续)。对每一列1xn进行softmax得到概率最大的字符,得到的最终序列需要去除连续的重复字符,比如最终得到的序列为-stt-ate,那么去重合并后就得到state序列。
那么state的序列概率就变成了所有去重合并后为state的字符序列概率之和,只要最大化字符序列概率,就可以优化CRNN+CTC的文字识别算法。由于每个字符前后都可以插入blank,所以可以将所有可能状态如下图展开。
为了方便起见,对于所有state序列的合法路径做一些限制,规则如下:
1.转换只能往右下方向,其它方向不允许
2.相同的字符之间起码要有一个空字符
3.非空字符不能被跳过
4.起点必须从前两个字符开始
5.终点必须落在结尾两个字符
根据上述约束规则,遍历所有"state"序列的合法路径,“state”的所有合法路径如下图所示:
其中绿色框部分为起点和终点,蓝色箭头为"state"序列的合法路径。当然可以通过枚举所有路径,然后求所有路径的概率之和即为"state"序列的概率。但是枚举所有路径计算复杂度太高了,于是CTC引入了HMM的前向-后向算法来减少计算复杂度(可以参考一下我之前的回答,增加隐马尔可夫模型(HMM)的理解如何用简单易懂的例子解释隐马尔可夫模型?)。
以前向算法为例(后向算法可以认为是状态序列的反转,计算方法相同),简单来说,就是利用分治和动态规划的思想,把8个时间点拆分成7个重复单元,然后先计算出第一个重复单元红色虚线框中每个状态的观测概率,并且保存下来当作下一个重复单元的初始状态,循环计算7次就得了最终的观测概率。比起暴力求解观测概率,复杂度大大降低。
Attention
基于Attention的OCR解码算法,把OCR文字识别当成文字翻译任务,即通过Attention Decoder出文字序列。
RNN -> Seq2Seq
左图是经典的RNN结构,右图是Seq2Seq结构。RNN的输入序列和输出序列必须有相同的时间长度,而机器翻译以及文字识别任务都是输入输出不对齐的,不能直接使用RNN结构进行解码。于是在Seq2Seq结构中,将输入序列进行Encoder编码成一个统一的语义向量Context,然后送入Decoder中一个一个解码出输出序列。在Decoder解码过程中,第一个输入字符为<start>,然后不断将前一个时刻的输出作为下一个时刻的输入,循环解码,直到输出<stop>字符为止。
Seq2Seq -> Attention Decoder
Seq2Seq把所有的输入序列都编码成一个统一的语义向量Context,然后再由Decoder解码。由于context包含原始序列中的所有信息,它的长度就成了限制模型性能的瓶颈。如机器翻译问题,当要翻译的句子较长时,一个Context可能存不下那么多信息,就会造成精度的下降。除此之外,如果按照上述方式实现,只用到了编码器的最后一个隐藏层状态,信息利用率低下。
所以如果要改进Seq2Seq结构,最好的切入角度就是:利用Encoder所有隐藏层状态解决Context长度限制问题。于是Attention Decoder在Seq2Seq的基础上,增加了一个Attention Layer,如上图所示。
在Decoder时,每个时刻的解码状态跟Encoder的所有隐藏层状态进行cross-attention计算,cross-attention将当前解码的隐藏层状态和encoder的所有隐藏层状态做相关性计算,然后对encoder的所有隐藏层加权求和,最后和当前解码的隐藏层状态concat得到最终的状态。这里的cross-attention计算方式也为后来的Transformer框架打下了基础(详细看我之前写的文章计算机视觉"新"范式: Transformer)。
另外,从形式上看,Attention Decoder很自然的可以替换成最近非常流行的Transformer,事实上,最近也有几篇基于Vision Transformer的文本识别算法。
ACE
基于ACE的解码方法不同于CTC和Attention,ACE的监督信号实际上是一种弱监督(输入输出没有做形式上的对齐,没有先后顺序信息,倾向于学习表征),并且可以用于多行文字识别。
对于单行文字,假设输出维度为Txn(T是序列长度,n是字符集合总数),那么第k个字符出现的总数为,然后除以T,就能得到第k个字符出现的概率分布(记作),做相同计算,可以求出所有字符的概率分布,最后和label字符的概率分布计算交叉熵优化网络。同理,对于多行文字,只需要将HxW压缩成T=HW,然后计算所有字符的概率分布即可。
CTC/Attention/ACE三种解码算法比较
从模型设计上来看,可以采用结合上面3种方法的多任务文本识别模型。在训练时,以CTC为主,Attention Decoder和ACE辅助训练。在预测时,考虑到速度和性能,只采用CTC进行解码预测。多任务可以提高模型的泛化性,同时如果对预测时间要求不高,多结果也可以提供更多的选择和对比。
上图来源于微信OCR技术的比较:
1.CTC和ACE方法不需要额外的计算参数,Attention需要额外的计算参数
2.推理内存,ACE < CTC < Attention;推理速度,ACE > CTC > Attention
3.CTC效果更好一些,适合长文本;Attention可以得到语言模型;ACE可以用于计数和2D预测
由于Attention依赖于上一个预测结果,导致只能串行解码,推理速度影响较大,但是可以得到语言模型做pretrain迁移使用;而CTC可以通过引入blank字符做形式上对齐,并且通过HMM前向-后向算法加速;ACE则直接不依赖顺序信息,直接估计整体分布。三者各有利弊,实际使用时,需要结合具体任务按需使用。
Reference
[1] An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
[2] Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks
[3] Robust Scene Text Recognition with Automatic Rectification
[4] Aggregation Cross-Entropy for Sequence Recognition
[5] https://mp.weixin.qq.com/s/6IGXof3KWVnN8z1i2YOqJA
强烈推荐以下三篇blog
完全解析RNN, Seq2Seq, Attention注意力机制
https://xiaodu.io/ctc-explained/
陀飞轮:OCR文字识别—基于CTC/Attention/ACE的三大解码算法欢迎关注Smarter,构建CV世界观
欢迎加入Smarter交流群,添加微信「cjy094617」,备注「学校-方向」即可
八、长截图如何提取文字?
一、使用手机相册实现提取文字。
使用相册打开截图,底下会自动出来“提取图片文字”的字样,点击它就会自动识别文字,然后粘贴你所需要的文字即可。
二、微信提取文字
在微信里找到并点开需要提取文字的图片。出现大图以后,长按图片,等待选项跳转。选中最后一个提取文字选项,等待文字出来即可。
三、QQ提取文字
在QQ里面找到需要提取文字的图片,并点击放大。再用手指长按图片,等待下方的菜单栏跳转出来。找到最后一个提取文字选项并点击,等待扫描完成即可。
九、如何关闭截图提取文字?
方法如下:
需要关闭截图提取文字的话,首先可以使用智慧识屏,然后两根手指长按屏幕,等待两秒,就可以关闭截图来提取文字了。
十、iPad截图怎么提取文字?
1.打开手机QQ,点击加号
2.点击扫一扫
3.点击转文字
4.点击上传图片按钮
5.选择一张图片,点确定
6.文字在正提取当中。
7.提取文字完成,点击复制既可。
这篇关于《迅捷ocr文字识别软件怎么安装?》的文章就介绍到这了,更多新媒体运营相关内容请浏览A5工具以前的文章或继续浏览下面的相关文章,望大家以后多多支持A5工具 - 全媒体工具网!
相关资讯
查看更多
大鲨鱼视频去水印教程手机

ai写作工具工作好用吗

如何把抖音的音频提取出来?

飞盘狗视频去水印网站推荐

ai党务工作写作小程序

抖音怎么提取文字出来

沙湖图片去水印教程视频
